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Abstract

It is shown that in a rational conformal field theory every torus one-point
function of a given highest weight state satisfies a modular differential equation.
We derive and solve these differential equations explicitly for some Virasoro
minimal models. In general, however, the resulting amplitudes do not seem to
be expressible in terms of standard transcendental functions.

PACS numbers: 11.25.−w, 11.25.Hf

1. Introduction

It has been known for some time that every rational conformal field theory satisfies a
common modular differential equation that is solved by all characters of the (finitely many)
representations. This fact was first observed, using the transformation properties of the
characters under the modular group, in [1–4]; later developments of these ideas are described
in [5–7]. Following the work of Zhu [8], the modular transformation properties of the
characters were derived from first principles (see also [9]). Zhu’s derivation suggests that the
modular differential equation is a consequence of a null vector relation in the vacuum Verma
module [10, 11], see also [12].

This modern point of view suggests that not only the characters of a rational conformal
field theory are characterized by a modular differential equation, but the same is also true for
the torus one-point functions of a given highest weight state [13] (see also [5]). Indeed, every
highest weight state of a rational conformal field theory has a non-trivial null vector which in
turn leads to a modular differential equation for the associated torus one-point functions. In
this paper we explain how to derive this differential equation, and then exemplify this general
method with the case of the Virasoro minimal models. In particular, we determine closed-form
expressions for the torus one-point functions of all highest weight states of the Yang–Lee, the
Ising and the tricritical Ising model; for the case of the Ising model our answer reproduces the
results of [13, 14]. We also make some general statements about the one-point functions of
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the (1, 4), (4, 1) and (2, 2) field of a general minimal model. As we explain, generically the
resulting amplitudes cannot be expressed in terms of standard transcendental functions.

For affine theories, torus one-point functions have been studied before, using the
generalization of the Knizhnik–Zamolodchikov equation to surfaces of higher genus [15],
see also [16]. The analysis of Zhu [8] was generalized to the case of torus one-point functions
in [13], see also [17]; our derivation of the modular differential equation is a direct application
of this analysis. The modular covariance properties of the torus one-point functions were
derived in [18] for the case of the minimal models, and in [13] for general rational conformal
field theories. More recently, these torus amplitudes have been studied from the point of view
of the representation of the modular group they give rise to [19, 20].

This paper is organized as follows. In the following section we show how to derive the
modular differential equation for the torus one-point functions. The question of whether the
resulting functions can be expressed in terms of standard transcendental functions is addressed
in section 2.1. Section 3 applies these general ideas to the Virasoro minimal models. Finally,
section 4 contains our conclusions. There are three appendices where our conventions and a
technical lemma (due to Terry Gannon) are described.

2. The differential equation

Suppose that A is a rational chiral algebra (or vertex operator algebra); for a brief introduction
to our conventions see appendix A. Since A is rational, it has only finitely many inequivalent
highest-weight representations; we shall denote these by Hj . Let v be a highest weight state
of a representation v ∈ Hj . We would like to study the torus one-point functions of v, i.e.

TrHl

(
V (v, z)qL0− c

24
)
. (2.1)

Here Hl is any representation of the chiral algebra A. Obviously, in order for this torus
amplitude to be non-trivial we need that the fusion rules allow for the fusion

Hl ⊗ Hj ⊃ Hl . (2.2)

Since

[L0, V (v, z)] =
(

z
d

dz
+ h

)
V (v, z), with L0v = hv (2.3)

it follows that the torus amplitude has a trivial z-dependence; indeed, if we define

χl(v; τ) = zhTrHl

(
V (v, z)qL0− c

24
) = TrHl

(
V (zL0v, z)qL0− c

24
)
, (2.4)

then χl(v, τ ) is in fact independent of z. Note that the last expression is even defined for v that
are not eigenvectors of L0. In the following we shall sometimes set z = 1 in order to simplify
our expressions.

The idea of our analysis is to derive a differential equation in τ (that is independent of
which representation Hl is considered, but does depend on v) for these amplitudes. Following
the analysis of [8, 13], this can be done in essentially the same way as in [11]. The key step
of the argument is the recursion relation

TrHj

(
V (a[−ha ]v, 1)qL0

) = TrHj
(o(a)V (v, 1)qL0) +

∞∑
k=1

G2k(q) TrHj

(
V (a[2k−ha ]v, 1)qL0

)
,

(2.5)

where Gn(q) is the nth Eisenstein series that is defined in appendix B. Note that the only
difference to [11] is that v is now not necessarily an element of the chiral algebra A.
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However, the commutation relations of an with V (v, z)—these are the main ingredients in the
derivation—are the same, independent of whether v is in the chiral algebra or not, and thus
the argument goes through without any change, see also [13].

If we replace a by L[−1]a in (2.5) and use that (L[−1]a)[n] = −(n + ha)a[n], as well as
o(L[−1]a) = (2π i)o(L−1a + L0a) = 0, we get

TrHj

(
V (a[−ha−1]v, 1)qL0

)
+

∞∑
k=1

(2k − 1)G2k(q) TrHj

(
V (a[2k−ha−1]v, 1)qL0

) = 0. (2.6)

Actually the term with k = 1 does not contribute since it is a commutator (see [8, 11, 13])

[o(a), V (v, z)] = V
(
a[−ha+1]v, z

)
(2.7)

that vanishes in the trace.
Given these observations we now make the following definition. Let Hj [G4(q),G6(q)]

denote the space of polynomials in the Eisenstein series with coefficients in Hj . We then
define Oq(Hj ) as the subspace of Hj [G4(q),G6(q)] generated by the states of the form

Oq(Hj ): a[−ha−1]v +
∞∑

k=2

(2k − 1)G2k(q)a[2k−ha−1]v, (2.8)

where a ∈ A and v ∈ Hj . Note that the sum is finite, since a[n] annihilates v for sufficiently
large n. It then follows from (2.6) that

χl(v; τ) = 0, if v ∈ Oq(Hj ). (2.9)

Finally, we observe that

a[−ha−n]v − (−1)n
∑

2k�n+1

(
2k − 1

n

)
G2k(q)a[2k−ha−n]v ∈ Oq(Hj ), n � 1, (2.10)

as follows from (2.8) by repeatedly replacing a by L[−1]a. With these preparations we can
now construct a modular differential equation for the torus one-point amplitudes. Suppose
that v ∈ Hj is a highest weight state with conformal weight h. If the theory is rational, then
it follows from the argument of [21] (together with the usual argument that is due to Zhu [8])
that we can find an integer s such that

(L[−2])
sv +

s−2∑
r=0

gr(q)(L[−2])
rv ∈ Oq(Hj ), (2.11)

where gr(q) are modular forms of weight 2(s − r). This then implies that the one-point
functions χl(v; τ) satisfy a modular differential equation of the form[

Ds,h +
s−2∑
r=0

fr(q)Dr,h

]
χl(v; τ) = 0, (2.12)

where Dt,h is the order t differential operator

Dt,h = D2t−2+hD2t−4+h · · · Dh, with Da = q
d

dq
− a

4π2
G2(q) = q

d

dq
− a

12
E2(q),

and fr(q) are modular forms of weight 2(s − r). To prove this we first note that because of
(2.9) the right-hand side of (2.11) vanishes inside the trace. On the other hand, using (2.5)
repeatedly, each term on the left-hand side can be written as

TrHl

(
V ((L[−2])

rv, 1)qL0− c
24

) = P (h)
r (D)χl(v; τ), (2.13)
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involving a modular covariant differential operator P (h)
r of order r. To see this, we note that

for r = 1 one gets, using (2.5) and replacing L0 by L0 − c
24 ,

TrHl

(
V (L[−2]v, 1)qL0− c

24
) = (2π i)2 TrHl

((
L0 − c

24

)
V (v, 1)qL0− c

24

)
+ hG2(q)TrHl

(
V (v, 1)qL0− c

24
)

= (2π i)2Dhχl(v; τ), (2.14)

which is modular covariant with weight 2 + h (since χl(v; τ) is modular covariant with weight
h). The case for general r follows by again applying (2.5), and using the same recursive
argument as in [11]. For the first few values of r, explicit formulae for the operators P (h)

r are
given in appendix C.

2.1. Admissibility

On general grounds we expect the different solutions of this differential equation to correspond
to the different torus one-point amplitudes with an insertion of v ∈ Hj . These different
solutions will be mapped into one another under the modular group; thus the family of
solutions forms a vector-valued (generalized) modular form of weight h [13, 18]. In fact, this
property also follows from the modular covariance of the differential equation derived above.
In order to account for the modular weight it is convenient to make the ansatz

χl(v; τ) = η(q)2hgl(q), η(q) = q
1
24

∞∏
n=1

(1 − qn), (2.15)

where η(q) is the Dedekind eta function. Since it has modular weight 1/2, gl(q) are then
components of a vector-valued modular function X : H → C

r (where H is the upper half-plane
and r is the number of different solutions gl), satisfying the transformation property

X

(
aτ + b

cτ + d

)
= ρ

(
ab

cd

)
X(τ ). (2.16)

Here
(
a b

c d

) ∈ SL2(Z) is an arbitrary group element, and ρ : SL2(Z) → GL(r, C) is a
representation of the modular group.

As we shall see, in certain simple examples we shall be able to give very explicit formulae
for gl(q). However, even among the minimal models, this will not be possible in general.
In fact, it is known [19, 23] that the vector-valued modular functions can be expressed using
known transcendental functions (in particular the Fricke functions) if the representation ρ of
the modular group SL2(Z) is admissible. Here admissible means that

(1) �(N) ⊂ kerρ, for some integer N;
(2) T is diagonal and S2 is a permutation matrix.

The subgroup �(N) is defined by

�(N) =
{(

a b

c d

)
∈ SL2(Z), |a, d ≡ 1(mod N) and b, c ≡ 0(mod N)

}
(2.17)

and

T = ρ

(
1 1
0 1

)
, S = ρ

(
0 −1
1 0

)
. (2.18)

It is often not easy to determine whether a representation is admissible or not. However, there
exists the following simple test that we shall use below: let N be the order of the modular
T-matrix and let t1, . . . , tn be the eigenvalues of T. If one can find an integer m coprime to
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N, 1 < m < N , such that the collection tm
2

1 , . . . , tm
2

n does not agree (including multiplicities)
with the original collection of eigenvalues t1, . . . , tn, then the representation is not admissible.
The criterion, as well as its proof, is due to Terry Gannon (see also [22]); more details are
given in appendix C.

3. Examples: minimal models

We would now like to illustrate the results of the previous chapter with some examples. In the
following we shall concentrate on the minimal models. Recall that the central charge of the
(p, q) minimal model is [24]

cp,q = 1 − 6(p − q)2

pq
, (3.1)

and that the allowed representations are described by (r, s) where r and s are integers satisfying
1 � r � q − 1 and 1 � s � p − 1. The highest weight of the representation corresponding
to (r, s) has conformal dimension

hr,s = (pr − qs)2 − (p − q)2

4pq
, (3.2)

and we have the identifications (r, s) 	 (q − r, p − s). The representation labelled by (r, s)

has two independent null vectors: one at level rs, and one at level (q − r)(p − s).

3.1. Simple examples: Yang–Lee and Ising

It is instructive to start by analysing two simple examples.

3.1.1. Yang–Lee model. The Yang–Lee model is the minimal model with (p, q) = (5, 2).
Its central charge is c = − 22

5 , and it has two highest-weight representations with conformal
weights

h1,1 = h1,4 = 0, h1,2 = h1,3 = − 1
5 . (3.3)

The only non-trivial representation is thus Hj = H− 1
5
, and since its Kac label is (1, 2), it has

a null vector at level 2

N2 = (
L[−2] − 5

2 (L[−1])
2)|−1/5〉. (3.4)

In the torus amplitude L[−1] descendants do not contribute since o(L[−1]b) = 0; thus the above
null vector leads simply to the differential equation

D−1/5χ(−1/5; τ) =
[
q

d

dq
+

1

60
E2(q)

]
χ(−1/5; τ) = 0. (3.5)

It is not difficult to show that (3.5) is solved by

χ(−1/5; τ) = η−2/5(q), (3.6)

as follows from the well-known relation

−4π i
d

dτ
ln(η(τ )) = G2(τ ) = π2

3
E2(τ ). (3.7)

Note that the leading power of χ(−1/5; τ) = η−2/5(q) is

η−2/5(q) = q− 1
60

∞∏
n=1

(1 − qn)−2/5. (3.8)

5
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Thus the representation Hl in which the trace is taken is the H−1/5 representation since
−1/5 − c/24 = −1/5 + 11/60 = −1/60. This is also compatible with the fusion rules since(− 1

5

) ⊗ (− 1
5

) = (0) ⊕ (− 1
5

)
(3.9)

contains the (−1/5) representation. [On the other hand, the fusion of (0)⊗(−1/5) = (−1/5),
and hence does not contain (0).]

Obviously, the representation with conformal weight h1,3 = −1/5 also has a null vector
at level 3, which is explicitly given by

N3 = (
L[−3] − 10

9 L[−1]L[−2] + 25
36L[−1]L[−1]L[−1]

)|−1/5〉. (3.10)

However, this null vector leads to a trivial differential equation: since L[−1] descendants do
not contribute inside the trace, only the first term can be non-trivial. However, it follows, for
example, from (2.6) that it also vanishes inside any trace.

3.1.2. Ising model. The Ising model is the minimal model (p, q) = (4, 3) with central
charge c = 1

2 . Its highest-weight representations have conformal weights

h1,1 = h2,3 = 0, h1,2 = h2,2 = 1
16 , h1,3 = h2,1 = 1

2 . (3.11)

Let us first consider the one-point functions of the h = 1
2 field. It has a null vector at level 2

which is of the form

N2 = (
L[−2] − 3

4 (L[−1])
2)|1/2〉. (3.12)

By the same arguments as above this leads to the differential equation

D1/2χ(1/2; τ) =
[
q

d

dq
− 1

24
E2(q)

]
χ(1/2; τ) = 0, (3.13)

whose unique solution is (see also [13, 14])

χ(1/2; τ) = η(q). (3.14)

Note that the leading exponent is 1/24 = 1/16−c/24 = 1/16−1/48, and hence the character
is taken in the Hl = H1/16 representation. This ties in with the fact that there is the fusion rule(

1
2

) ⊗ (
1

16

) = (
1

16

)
. (3.15)

Actually this is the only non-trivial torus one-point function since the fusion of (1/2) with
(1/2) does not contain (1/2). We also note in passing that the level 3 null vector of the
h = 1/2 representation leads again to a trivial differential equation.

The situation is more interesting for the h = 1/16 field, for which we get two non-trivial
differential equations, one from the null vector at level 2, and one from the null vector at level
4. The first one is simply

D1/16χ(1/16; τ) =
[
q

d

dq
− 1

192
E2(q)

]
χ(1/16; τ) = 0, (3.16)

while the second one turns out to be (compare with the calculations of section 3.3)[
D33/16D1/16 − 5

576
E4(q)

]
χ(1/16; τ) = 0. (3.17)

One easily shows that there is no non-trivial solution to both of these equations; this ties in
with the fact that the fusion rules do not allow for a non-trivial one-point function for the
h = 1/16 field since(

1
16

) ⊗ Hi �⊃ Hi , for any highest-weight representation Hi . (3.18)

6
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3.2. A more general analysis

We can now put these considerations into a somewhat more general context. Each
representation (r, s) has two independent null vectors at levels N1 = rs and N2 =
(q − r)(p − s). Note that N1 is only odd if both r and s are odd; in this case, N2 is
necessarily even since p and q are coprime, and hence cannot both be even. Thus either N1

or N2, or both numbers are even. Without loss of generality, we may therefore assume that
N1 = rs is even.

As we have seen above, for each null vector of even level N we get a non-trivial modular
differential equation of order N/2, while a null vector at odd level does not give rise to any
non-trivial constraint. (It is not difficult to show this in general since the recursion relations
only relate states at odd level to states at odd level.) From what we have just explained, we
therefore always have at least one non-trivial differential equation of order rs/2. If in addition
(q − r)(p − s) is even, then we have a second (linearly independent) differential equation.
Since both equations are linear differential equations in the same variable τ , we then do not in
general expect to find any non-trivial solution (as was for example the case for the h = 1/16
field in the Ising model). In fact, the absence of a solution can also be understood in general
using the constraints coming from the fusion rules (2.2).

To see this we first observe that N1 and N2 can only both be even if (i) both r and s are
even, and either p or q is even; (ii) r is even, s is odd and p is odd; (iii) s is even, r is odd and
q is odd. Next we recall that the fusion of a representation (l,m) with (r, s) is given by [24]

(l,m) ⊗ (r, s) =
min(l+r−1,2q−l−r−1)⊕

l′=|l−r|+1

min(m+s−1,2p−m−s−1)⊕
m′=|m−s|+1

(l′,m′), (3.19)

where in each sum l′ and m′ take only every other integer value. It is then easy to
see that in all three cases (i)–(iii), (l,m) does not appear (up to the field identification
(l′,m′) ∼ (q − l′, p − m′)) in this fusion product. In particular, this then implies that
there should not exist any torus one-point function, since the condition (2.2) is not satisfied.

For example, in case (i), the l′ and m′ that appear in (3.19) have the opposite cardinality
from l and m respectively; thus we need to apply the field identification, but since either p or
q is even, this does not alter the cardinality of one of them. In case (ii), we need to apply a
field identification to the right-hand side of (3.19) since l′ has the opposite cardinality from l.
However, since p is odd p − m′ then has the opposite cardinality from m. The analysis in case
(iii) is identical.

Thus we shall concentrate on the case that N1 is even and N2 is odd. This is the case if
(a) both r and s are even, and both p and q are odd; (b) r is even and s is odd, and p is even and
q is odd; (c) r is odd and s is even, and p is odd and q is even.

In each of these cases, we have one modular differential equation of order rs/2. We should
thus expect that the rs/2 solutions correspond to the different torus one-point amplitudes that
are allowed by the fusion rule condition (2.2). To see this we observe that the fusion of (l,m)

with (r, s) contains only representations of the form (depending on the values of (l,m) and
(r, s) some of these terms may in fact not appear)

(l + �l,m + �m), where �l = −r + 1, . . . , r − 1, �m = −s + 1, . . . , s − 1,

(3.20)

and �l and �m only take every other value. Since either r or s (or both) are even, we can
only get (l,m) in this fusion product for

l + �l = q − l, m + �m = p − m, (3.21)

7
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i.e. for

l = 1
2 (q − �l), m = 1

2 (p − �m). (3.22)

Note that in all three cases (a)–(c) these numbers are integers. Since �l (�m) takes r (s)
values, there are therefore rs solutions; in fact, one easily checks that all of these solutions are
in fact compatible with the actual fusion rules (3.19). Furthermore, they are pairwise identical
since for (l,m) given by (3.22)

q − l = 1
2 (q + �l), p − m = 1

2 (p + �m). (3.23)

Thus there are always precisely rs/2 allowed torus one-point functions, and they will precisely
correspond to the rs/2 different solutions of the modular differential equation.

3.3. Null vectors at level 4

Given the results of the previous subsection, we shall now make a general analysis for the
torus one-point functions of the fields (r, s) = (1, 4), (4, 1) and (r, s) = (2, 2). Each of these
representations has a null vector at level 4, which is of the form

N4 = (
a1L−4 + a2L−1L−3 + a3L−2L−2 + a4L−1L−1L−2 + a5L

4
−1

)|h〉, (3.24)

where the parameters ai are given as

(1, 4): a1 = −6a5q
p2 + 4pq + 6q2

p3
a2 = 2a5q

5p + 12q

p2
a3 = 9a5q

2

p2
a4 = −10a5q

p

(4, 1): a1 = −6a5p
q2 + 4pq + 6p2

q3
a2 = 2a5p

5q + 12p

q2
a3 = 9a5p

2

q2
a4 = −10a5p

q

(2, 2): a1 = −3a5
p2 + 2pq + q2

pq
a2 = 2a5

p2 + 3pq + q2

pq
a3 = a5

p4 − 2p2q2 + q4

p2q2

a4 = −2a5
p2 + q2

pq
.

A null vector of the form (3.24) leads to the modular differential equation[
D2D0 +

(
c + 8h

2
+ 3h

a1

a3

)
E4(q)

720

]
g(q) = 0, (3.25)

where we have written χ(h; τ) = η2h(q)g(q)—see (2.15). The two different solutions for g

have the T-matrix

T =
(

exp(π i/6(1 +
√

1 − 144�)) 0
0 exp(π i/6(1 − √

1 − 144�))

)
, (3.26)

where

� =
(

c + 8h

2
+ 3h

a1

a3

)
1

720
. (3.27)

3.3.1. The case (2,2). If h = h2,2,� is in fact independent of p, q and equal to − 5
576 .

Moreover the T-matrix satisfies the condition for admissibility described in section 2.1. In
fact, one finds that the two solutions are given as

g1(q) = η(q4)2

η(q)η(q2)
, g2(q) = η(q2)5

η(q)3η(q4)2
. (3.28)

8
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Their leading behaviour is

gi(q) = qsi (1 + O(q)), with s1 = 5
24 , s2 = − 1

24 . (3.29)

Note that these correspond to the conformal dimensions

si = hri ,si
− c

24
− h2,2

12
, for (r1, s1) =

(
q − 1

2
,
p + 1

2

)
,

and (r2, s2) =
(

q − 1

2
,
p − 1

2

)
. (3.30)

[The term h2,2/12 comes from the η-function prefactor in the definition of g(q).] This is
compatible with the allowed fusion rules(

q − 1

2
,
p + 1

2

)
⊗ (2, 2) ⊃

(
q + 1

2
,
p − 1

2

)
∼=

(
q − 1

2
,
p + 1

2

)
(3.31)

and (
q − 1

2
,
p − 1

2

)
⊗ (2, 2) ⊃

(
q + 1

2
,
p + 1

2

)
∼=

(
q − 1

2
,
p − 1

2

)
. (3.32)

Here we have assumed that p and q are odd; if either p or q is even, then we know from the
general analysis of section 3.2 that there is a second differential equation, and that the fusion
rules do not actually allow for any non-trivial one-point function.

It is also not difficult to work out the corresponding representation of the modular group
and to show (for example, using the results of [22]) that it is indeed admissible.

3.3.2. The cases of (1, 4) and (4, 1). If h = h1,4 the T-matrix takes the form

T =
(

exp
(
π i 1+3q/p

6

)
0

0 exp
(
π i 1−3q/p

6

)
)

. (3.33)

Obviously, the (1, 4) field only exists if p � 5 (and q � 2). It also follows from our general
analysis that we only get non-trivial torus one-point functions if p is odd and q is even—we
are here in case (c). For such p and q the T-matrix generically fails the test of section 2.1 and
therefore the associated representation of the modular group is not admissible. In fact, there
are only finitely many (p, q) for which this is not the case; the simplest case is the tricritical
Ising model with p = 6 and q = 5 that will be discussed below in section 3.4.

To see that there are only finitely many cases where the representation is admissible,
we use the test of section 2.1. In the current context it requires that for any l coprime to
12p, l2(p + 3q) must be congruent to p ± 3q (mod 12p). We would like to show that this is
only possible if p divides 120. First we show that if p contains as a factor a, then the condition,
taken mod a, becomes l2 = ±1 (mod a) for any l coprime to a. If a is a prime a � 7, we
can take l = 2 to see that this has no solution. Thus p can only contain the factors 2, 3 and
5. For a = 5, l = 2 is possible, but not for a = 25; hence p can only contain a single power
of 5. Similarly, l = 2 is possible for a = 3, but not for a = 9, and thus also only a single
factor of 3 can appear in p. Finally, for a = 2, we can take l = 3 to conclude that at most
three powers of 2 appear in p. Hence p must divide 23 × 3 × 5 = 120, and thus in particular
2 � q < p � 120, leading to finitely many cases only1.

The situation is similar for h = h4,1, for which the T-matrix takes the form

T =
(

exp
(
π i 1+3p/q

6

)
0

0 exp
(
π i 1−3p/q

6

)
)

. (3.34)

1 We thank Terry Gannon for explaining this argument to us.

9



J. Phys. A: Math. Theor. 42 (2009) 045405 M R Gaberdiel and S Lang

Obviously, q � 5, and hence p � 6. Furthermore—we are now in case (b)—p has to be
even and q odd. As before, generically the T-matrix fails the test of section 2.1, except if
q = 5, where it is satisfied for all p. (Note that for q = 5, the T-matrix is periodic in p with
period 20.)

As an example where the modular representation is not admissible, let us consider the
(7, 2) model with central charge c = − 68

7 and highest-weight representations

h1,1 = h1,6 = 0, h1,2 = h1,5 = − 2
7 , h1,3 = h1,4 = − 3

7 . (3.35)

We are interested in the (1, 4) field, whose T-matrix is (see (3.33))

T =
(

exp
(
π i 13

42

)
0

0 exp
(
π i 1

42

)) (3.36)

and has order N = 84. One easily checks that it fails the test of section 2.1, for example take
m = 5. Moreover, if we make the ansatz

g(q) =
∞∑

n=0

anq
n+s a0 = 1 (3.37)

in (3.25), we get the solutions(
h1,2 = h1,5 = − 2

7

)
: g− 2

7
(q) = q

13
84

(
1 − 13

14q − 13
49q2 + 299

686q3 − 2674
7725q4 + · · · ),

(
h1,3 = h1,4 = − 3

7

)
: g− 3

7
(q) = q

1
84

(
1 − 4

7q − 267
637q2 + 8

343q3 − 2236
7203q4 + · · · ).

Note that the first character is taken in the − 2
7 representation, since − 2

7 − c
24 − h1,4

12 = 13
84 , while

the same analysis shows that the second is taken in the − 3
7 representation. The fact that the

coefficients of the q-expansion are fractional numbers also suggests that we cannot express
these functions in terms of standard transcendental functions.

Actually, the situation is even worse in that the above two-dimensional representation
of the modular group (whose T-representative is given in (3.36)) does not even have finite
image, i.e. the set of 2 × 2 matrices corresponding to all the elements of the modular group
is infinite. In fact, all finite two-dimensional matrix groups are known—they are McKay’s
A-D-E groups—and one can easily show that the above representation is not one of them.
(The T-matrix has order 84, and this rules out that the representation is of A- or E-type.
Furthermore, the determinant of the T-matrix has order 6, and thus the group must have a
one-dimensional representation whose order is a multiple of 6; this rules out the D-series. We
thank Terry Gannon for explaining this to us.)

3.4. Tricritical ising model

An interesting exception to these general considerations is the tricritical Ising model with
(p, q) = (5, 4). It has central charge c = 7

10 . The highest-weight representations are

h1,1 = h3,4 = 0, h1,2 = h3,3 = 1
10 , h1,3 = h3,2 = 3

5 ,

h1,4 = h3,1 = 3
2 , h2,1 = h2,4 = 7

16 , h2,2 = h2,3 = 3
80 .

(3.38)

From our general analysis, we know that there are no torus one-point functions for h = 7
16

and h = 3
80 . On the other hand, we expect precisely one torus one-point function for h = 1

10 ,
two for h = 3

2 and three for h = 3
5 .

In the first case, the torus one-point function is simply (see also [13])

χ3/80(1/10, τ ) = η1/5(q). (3.39)

10
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For the case of the 3
2 state, the differential equation turns out to be(

D7/2D3/2 − 119

3600
E4(q)

)
χ(3/2; τ) = 0. (3.40)

We make the ansatz

χ(3/2; τ) = η3(q)g(q), g(q) =
∞∑

n=0

anq
n+s , a0 = 1. (3.41)

The indicial equation reads

s2 − s

6
− 119

3600
= 0, (3.42)

with solutions s1 = 17/60 and s2 = −7/60, corresponding to the two highest-weight
representations

3

24
+ s1 +

c

24
= 7

16

3

24
+ s2 +

c

24
= 3

80
, (3.43)

in agreement with the fusion rules(
3
2

) ⊗ (
7

16

) = (
7

16

)
,

(
3
2

) ⊗ (
3

80

) = (
3

80

)
. (3.44)

The first few coefficients are explicitly given as(
h2,1 = h2,4 = 7

16

)
: g 7

16
(q) = q

17
60

(
1 + 34

7 q + 17q2 + 46q3 + 117q4 + 266q5 + · · · )(
h2,2 = h2,3 = 3

80

)
: g 3

80
(q) = q− 7

60 (1 + 14q + 42q2 + 140q3 + 350q4 + 840q5 + · · ·).
It is remarkable that the coefficients are all positive integers (after rescaling the first function
by 7). In fact, the two functions agree precisely with the two characters of the ĝ2 level
k = 1 WZW model: the function g2 is the vacuum representation, while 7g1 is the character
corresponding to the seven-dimensional representation of g2. The associated representation
of the modular group is obviously admissible in this case.

This leaves us with analysing the torus one-point amplitude for the highest weight state
h = 3

5 . The associated modular differential equation takes the form(
D23/5D13/5D3/5 − 155

2304
E4(q)D3/5 +

25

55296
E6(q)

)
χ(3/5; τ) = 0. (3.45)

Writing as before χl(3/5; τ) = η6/5gl(q) we find the three solutions

g3/80(q) = η(τ)

η(2τ)
(3.46)

g1/10(q) = η(τ)

η(τ/2)
+ eπ i/24 η(τ)

η(τ/2 + 1/2)
(3.47)

g3/5(q) = η(τ)

η(τ/2)
− eπ i/24 η(τ)

η(τ/2 + 1/2)
. (3.48)

It is straightforward to determine the S-matrix corresponding to these three functions, and one
finds

S =

⎛
⎜⎝ 0 1/

√
2 1/

√
2

1/
√

2 1/2 −1/2
1/

√
2 −1/2 1/2

⎞
⎟⎠ . (3.49)

Since the S-matrix does not have a strictly positive row or column, it does not describe the
S-matrix of a conformal field theory; in particular, there is no Verlinde formula associated
with it. This also ties in with the fact that g3/80(q) has (integer) coefficients of both signs,
and hence cannot be interpreted as a character. However, the associated representation of the
modular group is certainly admissible.
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4. Conclusions

In this paper we have determined torus one-point functions by solving the associated modular
differential equations. The underlying method is very general and applies in principle to any
rational conformal field theory. We have exemplified it for the case of the Virasoro minimal
models. For some low-lying cases we could give explicit formulae in terms of well-known
functions. In particular, this was possible for all torus one-point functions of the Yang–Lee,
the Ising and the tricritical Ising model. (Some of these results had been found before in
[13, 14].) However, in general the solutions are more complicated and cannot be expressed
in terms of standard transcendental functions (as we also exhibited). Probably the resulting
functions are still fairly special since they arise in very special conformal field theories; it
would be very interesting to understand their structure better.
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Appendix A. Vertex operator algebras

Let us begin by collecting our conventions. The vacuum representation of a (chiral) conformal
field theory describes a meromorphic conformal field theory [25]. In mathematics, this
structure is usually called a vertex operator algebra (see, for example, [26, 27] for a more
detailed introduction). A vertex operator algebra is a vector space V = ⊕∞

n=0 Vn of states,
graded by the conformal dimension. Each element in V of grade h defines a linear map on V

via

a �→ V (a, z) =
∑
n∈Z

anz
−n−h (an ∈ End V ). (A.1)

In this paper we follow the usual physicists’ convention for the numberings of the modes; this
differs by a shift by h−1 from the standard mathematical convention that is also, for example,
used in [8]. We also use sometimes (as in [8]) the symbol

o(a) = a0. (A.2)

Since much of our analysis is concerned with torus amplitudes it will be convenient to work
with the modes that naturally appear on the torus; they can be obtained via a conformal
transformation from the modes on the sphere. More specifically, we define (see section 4.2 of
[8])

V [a, z] = e2π izhaV (a, e2π iz − 1) =
∑

n

a[n]z
−n−h. (A.3)

The explicit relation is then

a[m] = (2π i)−m−ha

∑
j�m

c(ha, j + h − 1,m + h − 1)aj , (A.4)

where

(log(1 + z))m(1 + z)ha−1 =
∑
j�m

c(ha, j,m)zj . (A.5)
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This defines a new vertex operator algebra with a new Virasoro tensor whose modes L[n] are
given by

L[n] = (2π i)−n
∑

j�n+1

c(2, j, n + 1)Lj−1 − (2π i)2 c

24
δn,−2. (A.6)

The appearance of the correction term for n = −2 is due to the fact that L is only quasiprimary,
rather than primary. Since the two descriptions are related by a conformal transformation to
one another, the new modes S[n] satisfy the same commutation relations as the original modes
Sn. In particular, the modes L[n] satisfy a Virasoro algebra with the same central charge as the
modes Ln.

Appendix B. Eisenstein series and modular covariant derivative

The Eisenstein series G2k(q), q = e2π iτ , are defined by

G2k(q) =
∑

(m,n) �=(0,0)

1

(mτ + n)2k
, k � 2, (B.1)

G2(q) = π2

3
+

∑
m∈Z\{0}

∑
n∈Z

1

(mτ + n)2
. (B.2)

For k � 2, the Eisenstein series are modular forms of weight 2k, that is

G2k

(
aτ + b

cτ + d

)
= (cτ + d)2kG2k(τ ), (B.3)

whereas G2 transforms as

G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ ) − 2π ic(cτ + d). (B.4)

This modular anomaly of G2 can be used to define a modular covariant derivative. Suppose
f (q) is a modular form of weight s, then Dsf (q) is a modular form of weight s + 2, where

Ds = q
d

dq
− s

4π2
G2(q). (B.5)

For k � 4 the space of modular forms of weight k has a basis (see, for example, chapter 4 in
[28])

{E4(q)mE6(q)n|4m + 6n = k with m, n � 0}, (B.6)

where En = Gn

2ζ(n)
denotes the normalized Eisenstein series, such that the constant term in the

power series expansion is 1. In particular all higher G2k can be written as polynomials in
G4,G6. The normalized Eisenstein series are given by

E2(q) = 1 − 24q − 72q2 − 96q3 − 168q4 − 144q5 − 288q6 − · · ·
E4(q) = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 + 60480q6 + · · ·
E6(q) = 1 − 504q − 16632q2 − 122976q3 − 532728q4 − 1575504q5

− 4058208q6 − · · · ,

(B.7)

and the relation between Gn and En for the first few values reads

G2(q) = − (2π i)2

12
E2(q), G4(q) = (2π i)4

720
E4(q), G6(q) = − (2π i)6

30240
E6(q). (B.8)

13



J. Phys. A: Math. Theor. 42 (2009) 045405 M R Gaberdiel and S Lang

Appendix B.1. Differential operators

The explicit formulae for the differential operators P h
r (D) are given by

P
(h)
1 (D) = (2π i)2D(1,h)

P
(h)
2 (D) = (2π i)4D(2,h) +

c + 8h

2
G4(q)

P
(h)
3 (D) = (2π i)6D(3,h) +

(
8 +

3(c + 8h)

2

)
G4(q)(2π i)2D(1,h) + 10(c + 8h)G6(q)

P
(h)
4 (D) = (2π i)8D(4,h) + (32 + 3(c + 8h))G4(q)(2π i)4D(2,h)

+ (160 + 40(c + 8h))G6(q)(2π i)2D(1,h) +
(
108(c + 8h) +

3

4
(c + 8h)2)G4(q)2,

where c is the central charge.

Appendix C. Test of admissibility

In this appendix we explain the simple criterion of admissibility (that is due to Terry Gannon).2

Let ρ be a representation of SL2(Z), such that the matrix T defined in (2.18) is diagonal. Let
t1, . . . , tm be the diagonal elements of T. Suppose that the kernel of ρ contains �(N). Then for
all integers � coprime to N, t�

2

1 , . . . , t�
2

m is identical to t1, . . . , tm, as multi-sets (i.e. the order
may have changed, but the multiplicities must be identical).

Proof. Since �(N) is in the kernel of ρ, ρ is well-defined as a representation of the quotient
SL2(Z)/�(N). But this quotient is just SL2(ZN), i.e. the set of 2 × 2 matrices with entries
in the ring ZN := Z/NZ and determinant ≡ 1 (mod N). Now, if � is coprime to N, then �

has a multiplicative inverse mod N, i.e. there is an integer, which we shall call �−1, with the
property that ��−1 ≡ 1 (mod N). This means that for any � coprime to N, the matrix

D� :=
(

�−1 0
0 �

)
(C.1)

lies in SL2(ZN), and has inverse

D−1
� =

(
� 0
0 �−1

)
. (C.2)

Now we use that in SL2(ZN) we have the identity(
� 0
0 �−1

)(
1 1
0 1

) (
�−1 0
0 �

)
=

(
1 �2

0 1

)
. (C.3)

But any M in SL2(ZN) can be lifted to SL2(Z), i.e. we can find a matrix M ′ ∈ SL2(Z), such
that M ′ ≡ M (mod N). So this means

ρ(D′
�)

−1Tρ(D′
�) = T �2

, (C.4)

i.e. the matrices T and T �2
are conjugate to each other. Since T and T �2

are diagonal, this is
equivalent to the statement that their diagonal elements are identical (as multi-sets).

It is now straightforward to deduce the following corollary from this statement. Let ρ be a
representation of SL2(Z), such that the T-matrix is diagonal. Let t1, . . . , tm be the eigenvalues
of T and let N be the order of T, i.e. T N = 1. Suppose there is an integer � coprime to N,
such that t�

2

1 , . . . , t�
2

m is not identical to t1, . . . , tm, as multi-sets. Then ρ does not contain any

2 We thank Terry Gannon for communicating also the proof to us.
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congruence subgroup �(N ′) in its kernel. In particular, it therefore does not satisfy condition
1 of section 2.1, and hence is not admissible. �

Proof. Suppose for contradiction that ρ contains �(N ′) in its kernel, for some N ′. Then the
order N of T must divide N ′. Let � be the integer coprime to N with the property stated in the
previous paragraph. Lift � to an integer �′ coprime to N ′, i.e. find an integer �′ such that �′

is coprime to N ′, and �′ ≡ � (mod N). Such an �′ exists by the Chinese remainder theorem.
Then T �′2 = T �2

since T has order N. So this �′ contradicts the previous statement. �
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